
NAG DMC

NAG DMC

Essential Introduction

Note: this document is essential reading for any prospective user of the NAG DMC.

1 Introduction

This document describes information fundamental to the successful use of the NAG DMC. It
begins with a description of NAG DMC and the accompanying documentation (see Section 2)
and thereafter describes key issues regarding the use of NAG DMC and its documentation (see
Section 3 and Section 4, respectively). Finally, Section 5 gives details of NAG’s support facilities.

2 The Functions and their Documentation

2.1 The Functions

NAG DMC is a comprehensive collection of computational functions, hereafter referred to as
functions, that can be used to solve a wide range of practical tasks.

The functionality of NAG DMC covers the eight broad categories or tasks:

(a) data cleaning;
(b) data transformations;
(c) outlier detection;
(d) clustering;
(e) classification;
(f) regression;
(g) association rules;
(h) utility functions.

2.2 The Documentation

Documentation on NAG DMC consists of:

(i) descriptions of the eight tasks listed above;
(ii) function documents.

The description of each of the categories (a) to (h) in the User Guide gives background information
on the task and guidance towards the selection of appropriate functions in NAG DMC to solve it.

Function documents give detail on calling the function from the C/C++ programming language
and the algorithm used in the analysis, see ‘Using the Documentation’ for more information.

The documentation is delivered in Portable Document Format (PDF) and can be viewed and
navigated by using the Adobe Acrobat Reader which can be downloaded free of charge from the
Adobe Web Site at http://www.adobe.com. The documentation may also be viewed and navigated
in a web-browser, e.g., Internet Explorer or Netscape, if that web-browser has the suitable plug-in.

2.3 Alternative Form of Documentation

The NAG web site (see ‘Support from NAG’) contains up-to-date documentation on NAG DMC
and news of support material available to download.

2.4 Implementations

NAG DMC is available on many different computer systems. An implementation of NAG
DMC is prepared by NAG for each distinct system, e.g., the Sun Solaris implementation. The
implementation is distributed to sites as a tested, compiled library of functions.

Essentially the same facilities are provided in all implementations of the NAG DMC , but, because
of differences in arithmetic behavior and in the compilation system, functions cannot be expected
to give identical results on different systems, especially for sensitive numerical problems.

Essential Introduction.1

http://www.adobe.com

NAG DMC

The documentation supports all implementations of the NAG DMC, with the help of a few simple
conventions, and a small amount of implementation-dependent information, which is published in
a User’s Note for each implementation.

2.5 Numerical Precision

NAG DMC is developed in double precision only.

2.6 C Language Standards

All functions in NAG DMC conform fully to ANSI C.

3 Using the Software

3.1 General Advice

A NAG DMC function cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(i) formulating a task;
(ii) programming the use of functions;
(iii) assessing the quality of results.

The User Guide and Section 3.2 provide more detail on (i); the function documents provide
information on (iii); the remainder of this section is concerned with (ii).

3.2 Formulating a Task

NAG DMC assumes that data values are supplied in numeric form. Any data mappings from
character string values to a numeric representation must be completed before calling NAG DMC
functions. Furthermore, as described in the User Guide, dummy variables may need to be calculated
for categorical variables with more than two categories.

Most functions in NAG DMC allow the user to select a subset of consecutive data records from a
set of data, which can be achieved by setting appropriate values for the function parameters rec1
and nrec.

Data variables are classified as:

(i) categorical variables which are variables that can take only a limited number of values, and
may be on either the ordinal or nominal scale. Data values on the ordinal scale have a
meaning on a number line, whereas the value of a nominal variable is arbitrary and only
serves to distinguish between other nominal values.

(ii) continuous variables that, in theory, can take the value of any real scalar.

In addition to being classified according to the values they may take, variables are also classified in
terms of their role in an analysis. For classification and regression tasks an independent variable is
one which (we assume) influences the outcome of interest, e.g., a classification or prediction. The
variable associated with an outcome of interest is a dependent variable.

Data records collected for use in solving a particular task are referred to as a training set of data
for classification and regression models. These sets of data include values for dependent as well as
independent variables in the data.

3.3 Programming Advice

3.3.1 General

NAG DMC and its documentation are designed on the assumption that the user knows how to
write a calling program in C. When a suitable NAG DMC function has been selected it must be
called using a suitable user-written C program, the calling program. This manual assumes that the
user has sufficient knowledge of the C programming language to be able to write such a program.
Example calling programs are provided with NAG DMC, and these can be used for fast prototyping
of solutions. The user is also recommended to pay particular attention to the specification of the
function parameters, array sizes and array indices in function documents.

3.3.2 Array References

In C it is possible to declare a two-dimensional variable using notation of the form:

Essential Introduction.2

NAG DMC

double a[dim1][dim2];

When this variable is a parameter to a function, it is effectively treated by the compiler as a pointer,
*a, of type double with an allocated memory of dim1∗dim2 on the stack. The address of an element
of this array, say a[3][5], is then an explicit address computed to be (a+3∗dim2+5), since C stores
data in row-major order. The C pre-processor allows a succinct notation for computing this explicit
address by using a macro definition:

#define A(I,J) a[(I)*dim2+J]

Alternatively it is possible for a user to allocate memory explicitly (on the heap) to a pointer of
type double *, using the form:

a = (double *)malloc(dim1*dim2*sizeof(double));

The ijth element of this array is then indexed using the pointer notation *(a+i∗dim2+j) or by
using the array notation a[i∗dim2+j]; or by using A(i, j) assuming the macro A(I,J) is already
defined.

If an array is symmetric, NAG DMC will save memory by using packed storage. Symmetric arrays
can be packed by row or by column.

3.3.3 NAG Data Types

NAG DMC have been written so that the interface to each function includes only standard C types,
i.e., char, int, long and double. This makes NAG DMC easy to call from some other languages,
e.g., Java by using the Java Native Interface, and C#.

Hence functions that compute recursive memory structures, such as tree lattices, return in
their interfaces integer casts of pointers to these structures instead of pointers to the structures
themselves. The pointer to a node structure in a tree lattice is recovered by an appropriate cast to
a NAG defined structure. The functions affected by these casts are:

nagdmc entropy tree;
nagdmc gini tree;
nagdmc reg tree;
nagdmc waid.

The ‘Explanatory Code’ sections of the function documents for these functions should be consulted
for further detail.

3.3.4 Memory Management

Memory is frequently dynamically allocated within the NAG DMC. All requests for memory are
checked for success or failure. In the unlikely event of failure occurring the NAG DMC function
returns an integer error code as documented in its function document.

Occasionally, functions return memory allocated within the function. Where appropriate, a
description of the contents of the returned memory is given in its function document under the
‘Explanatory Code’ section.

For example, the function declaration:

long *func(long a, double b);

returns memory of type long. This memory would be accessed through a parameter name in a
calling program with a C type of long *, e.g.,

long *retval;

retval = func(a,b);

Once the results from a successful function call have been processed, the returned memory should
be returned to the operating system by the user adding to the calling program the code. NAG
DMC provides functions for this purpose.

For full examples dealing with returned memory see the function documentation and example code
for NAG DMC functions:

nagdmc impute dist;

Essential Introduction.3

NAG DMC

nagdmc impute em;
nagdmc impute simp.

3.3.5 Optional Parameters in Functions

Arrays specified in the declaration of a function that, because of the values of other parameters,
will not be referenced should be set to 0. This allows for further error checking in the function
interface.

3.3.6 info Parameter

Within NAG DMC the parameter info is used to return information about the exit status of a
function. By convention, values of info < 0 are warnings and can be considered for information
purposes only, values of 0 < info ≤ 100 are potentially serious errors and will have caused the
function to exit prematurely. Values of info > 100 also cause the function to exit prematurely,
however, these values are reserved for user-supplied functions. Therefore, the value of the parameter
info must be checked after the return of each function call.

A full list of the error codes that each function may return is given in the ‘Parameters’ section of
the function documentation.

3.4 Data Function

The standard method for supplying data to the functions within NAG DMC is through the
parameter data. The data parameter specifies a one-dimensional array which holds all of the
data values of interest. However, many practical problems involve large amounts of data. In such
cases it is not always desirable, or even physically possible, to hold all of the data in memory at
one time. In order to facilitate the analyses of large sets of data, a number of NAG DMC functions
allow the data to be processed in chunks, i.e., by holding in memory at any one time only a subset
of the data.

Data chunking is enabled by the use of the three parameters: dfun, comm and chunksize. The
parameter dfun specifies a user-supplied function which reads in a chunk of data, comm allows
additional parameters to be passed to dfun and chunksize controls the size of the data chunks being
handled. The prototype for dfun is as follows:

void dfun(long irec, long chunksize, double x[], char *comm, int *ierr)

1: irec – long Input
On entry: the index in the data of the first record returned.

2: chunksize – long Input
On entry: the number of consecutive records returned.

3: x[chunksize∗nvar] – double Output
On exit: data values for the jth variable (for j = 0, 1, . . . ,nvar− 1) must be returned
in x[i ∗ nvar + j], for i = 0, 1, . . . , chunksize− 1.

4: comm – char * Input
On entry: a communication parameter allowing additional information to be passed
to dfun. This parameter is passed ‘as is’ through the calling function.

5: ierr – int * Output
On exit: if the value pointed to by ierr on return is greater than 100, the NAG DMC
function will terminate immediately and info will point to this value.

The only operation a data function must do is to copy data records irec to irec + chunksize − 1
into the array x, however, other tasks can be performed as well. For example, data can be cleaned,
recoded or dummy variables constructed from categorical data, prior to a regression analysis. The
benefit of performing these tasks within the data function is that they can be performed on small
chunks of data rather than the entire set of data.

Essential Introduction.4

NAG DMC

3.4.1 An Example Data Function

An example data function, nagdmc dfun basic, is supplied with NAG DMC. This function reads
chunks of data records from an input stream. As the data records are read from the stream in
chunks, only a small proportion of the set of data needs to be in memory at any one time. Using a
function like nagdmc dfun basic, and one of the analysis functions listed below, allows sets of data
records of an arbitrarily large size to be analysed. In order to illustrate how nagdmc dfun basic
was constructed annotated code extracts are given below. These extracts are taken from the file
nagdmc dfun basic.c, and the line numbering refers to the lines in that file.

1 void nagdmc_dfun_basic(long irec, long chunksize, double x[], char *comm,
int *ierr) {

3 long r, v;
4 FILE *fp;
5 static long total_read_in = 0;
6 long crec1, cnvar, cnrec;

10 sscanf(comm, "%d %d %d %p", &crec1, &cnvar, &cnrec, &fp);

46 if (feof(fp) || total_read_in >= (cnrec + crec1)) {
47 total_read_in = 0;
48 rewind(fp);
49 }

51 if (total_read_in == 0 && crec1 != 0) {
53 for (r = 0; r < crec1 && !feof(fp); r++) {
54 for (v = 0; v < cnvar && !feof(fp); v++)
55 fscanf(fp, "%*lf");
57 total_read_in++;
58 }
59 }

62 *ierr = 0;

65 for (r = 0; r < chunksize && !feof(fp); r++) {
66 for (v = 0; v < cnvar && !feof(fp); v++)
67 fscanf(fp, "%lf ", &x[r * cnvar + v]);
69 total_read_in++;
70 }

79 return;
80 }

Lines Description
1 function definition.
3 to 5 variable declarations.
10 Recover the user-supplied parameters from the communications parameter comm:

crec1 the first record to be read from the input stream. This is analogous
to the parameter rec1 in the calling function and should be set to the
same value.

cnrec the total number of data records that to be read from the input stream.
This is analogous to the parameter nrec in the calling function and
should be set to the same value. cnrec is used only for checking
purposes.

fp pointer to the input stream.
46 to 49 The calling function needs to be able to loop through the input data a number of times.

Therefore if the end of the file has been reached, or the required number of data records
have been read in, rewind the input stream and reset the counter total read in.

51 to 59 skip the first crec1 data records in the input stream.
62 initialise the error code to zero, indicating no errors have occurred.
65 to 70 read in chunksize data records, each containing cnvar variables, storing the

data in x.

Essential Introduction.5

NAG DMC

69 count the total number of data records read in.

The full version of nagdmc dfun basic has additional lines of code, mainly for checking the user-
supplied parameters:
Lines Description
9 to 31 If comm is not 0, check the parameters supplied within comm and

return error codes 101 to 104 if they take unexpected values.
32 to 36 return error code 105 if comm is 0.
39 to 43 allow the user the option of resetting the error checking counter total read in

and rewinding the input stream by calling nagdmc dfun basic on its own, with
chunksize set to zero.

72 to 77 checks that when the end of the input stream has been reached the expected number
of data records have been read in, that is total read in = crec1 + cnrec.

All other lines of code in the nagdmc dfun basic, not mentioned above, are either blank or contain
comments.

It should be noted that, because of the sequential nature of input streams, the parameter irec is not
referenced in nagdmc dfun basic, therefore a brief description of the values taken by irec is given
here. When dfun is first called, the parameter irec takes the same value as the parameter rec1
from the calling function. At the next call to dfun, irec = rec1 + chunksize, and at the nth call,
irec = rec1 + (n− 1) ∗ chunksize.

3.4.2 Using a Data Function

The following is an annotated code extract for calling the function nagdmc linear reg with the data
function nagdmc dfun basic:
1 long rec1 = 0, nvar = 5, nrec = 4, dblk = 4, nxvar = 0,

*xvar = 0, iwts = -1, yvar = 0, chunksize = 10;
2 double r2, rms, b[5], se[5], cov[15], model[48], eps = 0.0;
3 int info;
4 char *comm[20];
5 FILE *infp;
6 infp = fopen("example1.dat", "r");
7 sprintf(comm, "%d %d %d %p", rec1, nvar, nrec, infp);
8 nagdmc_linear_reg(rec1, nvar, nrec, dblk, 0, nagdmc_dfun_basic, comm,

chunksize, nxvar, xvar, yvar, iwts, &r2, &rms, &df,
b, se, cov, model, eps, &info);

1 to 3 variable declarations used by nagdmc linear reg.
4 allocate space for the communication parameter.
5 pointer for the input file.
6 open the input file.
7 populate the communication parameter with the first record, rec1, number of

variables, nvar, the number of data records, nrec and the file pointer, infp.
8 call an analysis function. As a data function is being used the data parameter

is set to 0.

A further example of an analysis performed whilst using a data function can be found in the example
file nagdmc reg dfun example.c.

3.4.3 Functions

The following functions facilitate the use of a data function:
nagdmc binomial reg linear model with binomial errors;
nagdmc dsu utility function for data summary statistics;
nagdmc linear reg linear model with Normal errors;
nagdmc nrgp allocates data records to groups given a clustering;
nagdmc pca principal components analysis;
nagdmc poisson reg linear model with Poisson errors;
nagdmc wcss within-cluster sums of squares.

3.5 Licence Management

Where appropriate, NAG DMC functions return an integer code of −999 through the info parameter
indicating that a valid licence for NAG DMC was not found.

Essential Introduction.6

NAG DMC

4 Using the Documentation

4.1 General Advice

At the beginning of the User Guide is a list of eight common tasks. New users should begin by
determining which of these tasks they wish to accomplish.

Having found a task to accomplish, the user should read the appropriate background information
and select an appropriate function in the NAG DMC. Where more than one function exists for a
particular task, a table is included which gives additional information to help guide the user to an
appropriate function.

Once a function has been selected, the user must consult the function document. Each function
document is essentially self-contained (it may, however, contain references to related documents).
It includes a description of the method used by the function, detailed specifications of the function
parameters and explanations of error and information code exits.

Finally, if necessary, an example program that uses the function can be viewed for further
information or used as a basis for your own task; information regarding how to compile and link
the example program is given in the Users’ Note for your implementation.

Documents may be navigated by using links embedded in the corresponding PDF file. These links
are coloured blue. Previous documents can be recalled by using the back button on Adobe’s Acrobat
Reader or a web-browser.

4.2 Structure of Function Documents

All function documents contain information under the seven headings:

Purpose
Declaration
Parameters
Notation
Description
References and Further Reading
See Also

In a few documents (notably the decision tree and data imputation functions) there is the further
heading:

Explanatory Code

Descriptions of these eight headings now follow.

4.2.1 Purpose

A brief description of the purpose of the function.

4.2.2 Declaration

The C language declaration of the function giving parameter types.

4.2.3 Parameters

A description of each parameter in an ordered, numerated list. Parameters are classified as follows:

Input : you must assign values to these parameters on or before entry to the function, and these
values are unchanged on exit from the function.

Output : you need not assign values to these parameters on or before entry to the function; the
function may assign values to them.

Input/Output : you must assign values to these parameters on or before entry to the function, and
the function may then change these values.

External Procedure: a function which may be supplied as part of your calling program. Its
specification includes full details of the function’s parameter list and specifications of its parameters
(all enclosed in a box).

Essential Introduction.7

NAG DMC

The word ‘Constraint :’ or ‘Constraints:’ in the specification of an Input parameter introduces a
statement of the range of valid values for that parameter, e.g.,

Constraint : rec1 ≥ 0.

If the function is called with an invalid value for the parameter (e.g., rec1 = −1), the function will
take an error exit.

The phrase ‘Suggested Value:’ introduces a suggestion for a reasonable initial setting for an Input
parameter (e.g., accuracy or maximum number of iterations) in case you are unsure what value
to use; you should be prepared to use a different setting if the suggested value turns out to be
unsuitable for your analysis.

4.2.4 Notation

Under this heading, where appropriate, links are forged between parameter names used in the
function declaration and the notation used in the algorithmic description (see below). These links
make it easier to understand the relationship of the background mathematics of an algorithm to its
implementation as a function.

4.2.5 Description

A full description of the algorithm used in the function is given, in addition to any relevant
computational issues.

4.2.6 References and Further Reading

Where appropriate, a list of text referred to in the Description of a function and general background
reading.

4.2.7 See Also

A hyper-linked list of other relevant functions, e.g., the function to extract information from a fitted
generalised linear model (GLM) is listed under ‘See Also’ for each GLM function.

4.2.8 Explanatory Code

Under this heading additional C source code is given to aid the explanation of a point in the text,
e.g., a function used to step through recursive data structures in the memory of a computer.

5 Support from NAG

5.1 Contact with NAG

Queries concerning this library should be directed initially to your local Advisory Service. If you
have difficulty in making contact locally, you can contact NAG directly.

5.2 NAG Response Centres

The NAG Response Centres are available for general enquiries from all users and also for technical
queries from users with Support.

The Response Centres are open during office hours, but contact is possible by fax, email and
telephone (answering machine) at all times. Please see the Users Note or the NAG web sites for
contact details.

When contacting one of our Response Centres it helps us to deal with you query quickly if you can
quote your NAG user reference and NAG product code.

5.3 NAG Web Site

The NAG web site is an information service providing items of interest to users and prospective users
of NAG products and services. The information is regularly updated and reviewed, and includes
implementation availability, descriptions of products, down-loadable software and technical reports.
NAG web sites can be accessed at:

http://www.nag.co.uk or
http://www.nag.com or
http://www.naggmbh.de or
http://www.nag-j.co.jp

Essential Introduction.8

http://www.nag.co.uk
http://www.nag.com
http://www.naggmbh.de
http://www.nag-j.co.jp

	Introduction
	The Functions and their Documentation
	The Functions
	The Documentation
	Alternative Form of Documentation
	Implementations
	Numerical Precision
	C Language Standards

	Using the Software
	General Advice
	Formulating a Task
	Programming Advice
	General
	Array References
	NAG Data Types
	Memory Management
	Optional Parameters in Functions
	info Parameter
	Data Function
	An Example Data Function
	Using a Data Function
	Functions

	Licence Management

	Using the Documentation
	General Advice
	Structure of Function Documents
	Purpose
	Declaration
	Parameters
	Notation
	Description
	References and Further Reading
	See Also
	Explanatory Code

	Support from NAG
	Contact with NAG
	NAG Response Centres
	NAG Web Site

